Exercise 68

Two curves are orthogonal if their tangent lines are perpendicular at each point of intersection. Show that the given families of curves are orthogonal trajectories of each other; that is, every curve in one family is orthogonal to every curve in the other family. Sketch both families of curves on the same axes.

$$
y=a x^{3}, \quad x^{2}+3 y^{2}=b
$$

Solution

Differentiate both sides of the given equations with respect to x.

$$
\frac{d}{d x}(y)=\frac{d}{d x}\left(a x^{3}\right) \quad \frac{d}{d x}\left(x^{2}+3 y^{2}\right)=\frac{d}{d x}(b)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
\frac{d y}{d x}=3 a x^{2} \quad 2 x+6 y \frac{d y}{d x}=0
$$

Solve each equation for $d y / d x$.

$$
\begin{array}{lr}
\frac{d y}{d x}=3 a x^{2} & 6 y \frac{d y}{d x}=-2 x \\
\frac{d y}{d x}=3 a x^{2} & \frac{d y}{d x}=-\frac{x}{3 y}
\end{array}
$$

At any point of intersection $y=a x^{3}$, so the slopes of the tangent lines are as follows.

$$
\begin{array}{ll}
\frac{d y}{d x}=3 a x^{2} & \frac{d y}{d x}=-\frac{x}{3 a x^{3}} \\
\frac{d y}{d x}=3 a x^{2} & \frac{d y}{d x}=-\frac{1}{3 a x^{2}}
\end{array}
$$

The slopes are negative reciprocals at the points of intersection; therefore, the familes of curves defined by $y=a x^{3}$ and $x^{2}+3 y^{2}=b$ are orthogonal trajectories.

Observe that at all points of intersection the tangent lines to the members of each family of curves are orthogonal.

